Control of Root Meristem Size by DA1-RELATED PROTEIN2 in Arabidopsis1[C][W]

نویسندگان

  • Yuancheng Peng
  • Wenying Ma
  • Liangliang Chen
  • Lei Yang
  • Shengjun Li
  • Hongtao Zhao
  • Yankun Zhao
  • Weihuan Jin
  • Na Li
  • Michael W. Bevan
  • Xia Li
  • Yiping Tong
  • Yunhai Li
چکیده

The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance and thus control root meristem size. However, the genetic and molecular mechanisms that determine root meristem size still remain largely unknown. Here, we report that da1-related protein2 (dar2) mutants produce small root meristems due to decreased cell division and early cell differentiation in the root meristem of Arabidopsis (Arabidopsis thaliana). dar2 mutants also exhibit reduced stem cell niche activity in the root meristem. DAR2 encodes a Lin-11, Isl-1, and Mec-3 domain-containing protein and shows an expression peak in the border between the transition zone and the elongation zone. Genetic analyses show that DAR2 functions downstream of cytokinin and SHORT HYPOCOTYL2 to maintain normal auxin distribution by influencing auxin transport. Further results indicate that DAR2 acts through the PLETHORA pathway to influence root stem cell niche activity and therefore control root meristem size. Collectively, our findings identify the role of DAR2 in root meristem size control and provide a novel link between several key regulators influencing root meristem size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.

The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance an...

متن کامل

Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana.

Although the size of an organism is a defining feature, little is known about the mechanisms that set the final size of organs and whole organisms. Here we describe Arabidopsis DA1, encoding a predicted ubiquitin receptor, which sets final seed and organ size by restricting the period of cell proliferation. The mutant protein encoded by the da1-1 allele has a negative activity toward DA1 and a ...

متن کامل

The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis.

Seed size in higher plants is determined by the coordinated growth of the embryo, endosperm, and maternal tissue. Several factors that act maternally to regulate seed size have been identified, such as auxin response factor2, apetala2, KLUH, and DA1, but the genetic and molecular mechanisms of these factors in seed size control are almost totally unknown. We previously demonstrated that the ubi...

متن کامل

Auxin Input Pathway Disruptions Are Mitigated by Changes in Auxin Biosynthetic Gene Expression in Arabidopsis1[W][OPEN]

Auxin is a phytohormone involved in cell elongation and division. Levels of indole-3-acetic acid (IAA), the primary auxin, are tightly regulated through biosynthesis, degradation, sequestration, and transport. IAA is sequestered in reversible processes by adding amino acids, polyol or simple alcohols, or sugars, forming IAA conjugates, or through a two-carbon elongation forming indole-3-butyric...

متن کامل

Root-Specific CLE19 Overexpression and the sol1/2 Suppressors Implicate a CLV-like Pathway in the Control of Arabidopsis Root Meristem Maintenance

In the Arabidopsis shoot apical meristem, an organizing center signals in a non-cell-autonomous manner to specify the overlying stem cells. Stem cells express the small, secreted protein CLAVATA3 (CLV3; ) that activates the CLV1-CLV2 receptor complex, which negatively controls the size of the organizing center. Consistently, CLV3 overexpression restricts shoot meristem size. The root meristem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013